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Decay of momentum flux in submerged jets 
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Slender laminar and turbulent, plane and axisymmetric jets emerging from orifices 
in plane or conical walls are studied at large distances from the orifices. The 
entrainment of momentum coupled with the entrainment of volume into a jet is 
determined, and its effect on the flow field is analysed by combining inner and outer 
expansions with a multiple scaling approach. 

In turbulent (plane or axisymmetric) jets, the axial velocity decreases more rapidly 
than predicted by classical boundary-layer solutions, and the momentum flux 
vanishes as the distance from the orifice tends to infinity. The analysis unveils a source 
of discrepancies in previous experimental data on turbulent jets. 

In a laminar plane jet, the momentum flux changes but little. In a laminar 
axisymmetric jet, the momentum flux changes slowly, yet considerably. When a 
critical distance from the orifice is approached, the momentum flux in the jet becomes 
very small, the jet diameter very large, and a toroidal viscous eddy is predicted. The 
structure of the flow field is briefly discussed. 

1. Introduction 
The classical self-similar solutions of incompressible jet flows (Schlichting 1933 ; 

Bickley 1937 ; Tollmien 1926; Gortler 1942; cf. also Schlichting 1979) are asymptotic 
solutions based on the following main assumptions (figure 1) : 

(a) The jet is very slender. This implies large values of the jet Reynolds number 
(as defined below) in the laminar case, while the width of turbulent jets is known to 
be independent (or nearly independent) of the jet Reynolds number. Applying 
boundary-layer theory, the flow field is divided in (at least) two regions, i.e. the jet 
boundary layer and the outer flow induced by the entrainment of fluid into the jet. 
(In the presence of a wall there may - or may not - be an additional boundary layer 
at  the wall, cf. $2.) 

(b) The distance r from the orifice, from which the jet emerges with mean-square 
velocity u,, is very large compared with the width or diameter, 2a,, of the orifice. 
Thus the volume flux from the orifice is neglected, and the flow at r does not depend 
on the parameters u, and a, separately but depends only on the kinematic momentum 
flux which is given by, respectively, M ,  = 2a,ut for a plane (two-dimensional) jet 
and 2xM, = xaEu2 for an axisymmetric jet. 

( c )  In the absence of volume forces, the momentum flux in the jet boundary layer 
is conserved, i.e. 

M = (2-j) 1; u2Yj dY = M ,  = const, 

where u is the velocity component in direction of the jet axis, Y is the lateral 
boundary-layer co-ordinate, and j = 0 or 1 for plane and axisymmetry flow, 
respectively . 
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Outer flow induced by jet 

FIGURE 1. Sketch of flow field, coordinate systems and parameters. 

Although each of the assumptions may be subject to criticism (Schneider 1983), 
we shall retain (a)  and ( b )  but investigate deviations from (c) below. The investigations 
are motivated by a number of peculiar results which have been found in previous 
work on both laminar and turbulent jets. 

For laminar jets with large Reynolds number, the method of matched asymptotic 
expansions was applied to  find second-order boundary -layer solutions (Rubin & 
Falco 1968; Mitsotakis, Schneider & Zauner 1984). In  the presence of walls, the 
asymptotic behaviour at large distances from the orifice turned out to be essentially 
different for plane and axisymmetric jets, respectively. While for plane jets the 
expansion is regular as r -f 00 (Rubin & Falco 1968), the second-order terms in the 
axisymmetric problem grow beyond bounds as r +  co (Mitsotakis et al. 1984). This 
is associated with a logarithmic (i.e. unlimited) decay of the momentum flux in the 
jet, and i t  severely restricts the applicability of boundary-layer theory to laminar 
axisymmetric jets emerging from walls. The failure of the boundary-layer analysis 
also raises the question of what the flow field looks like a t  very large distances from 
the orifices. 

Regarding turbulent jets, the assumption of constant momentum flux is in ap- 
parent agreement with some experiments (Bradbury 1965) whereas other measure- 
ments reveal discrepancies between theory and experiment. Miller & Comings (1957), 
for instance, observed a centreplane velocity decay slightly larger than predicted by 
classical theory. As the jet width was obtained in agreement with theory, the 
experiments by Miller & Comings (1957) suggest a slow decrease of the momentum 
flux through the jet cross-section with increasing distance from the orifice. With 
respect to the present analysis i t  will be of importance to note that Miller & Comings 
(1957) performed their experiments with a nozzle located in a wall perpendicular to 
the jet axis, whereas there was no such wall in Bradbury’s (1965) experiments. The 
problem became even more controversial when Hussain & Clark (1977) concluded 
from their data that the ‘total’ momentum flux (including the mean momentum flux 
due to velocity fluctuations) increases with increasing distance, and is not completely 
balanced by the mean static pressure integral. 

From a theoretical point of view, the conservation law for the momentum flux was 
examined by Kraemer (1971) and Kotsovinos (1978). While Kraemer studied global 
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momentum balances, Kotsovinos estimated (without recourse to an  asymptotic 
analysis) the various terms in the momentum balance equation, and concluded that 
for a plane turbulent jet out of a wall the momentum flux in the jet is reduced due 
to  the induced outer flow. However, as the distance from the orifice tends to  infinity, 
Kotsovinos (1978) predicts negative-infinite momentum flux, i.e. the approximation 
breaks down. The failure is due to the fact that  Kotsovinos (1978), like Kraemer 
(1971), did not account for the reactive effect which the decrease of the momentum 
flux exerts on the induced flow. 

In  the present paper the problem of jet flows at large distances from an orifice in 
a wall is studied by coupling the jet flow with the induced outer flow. This can be 
done in various ways. I n  the main paper the momentum flux in the jet boundary 
layer is considered to  be a slowly varying function of the distance, and the coupling is 
established by accounting for the momentum flux from the induced outer flow into the 
jet (entrainment of momentum). A more formal approach is given in Appendix B, 
where the method of multiple scales is combined with inner and outer expansions. 
For laminar axisymmetric flow, the analysis not only predicts large deviations from 
classical (as well as second-order) boundary-layer theory, but also indicates an 
unexpected breakdown of the slender-jet assumption. This suggests a flow field quite 
different from the common model of laminar jets. For turbulent (plane or 
axisymmetric) flow, the analysis provides answers to the questions concerning the 
invariance of the momentum flux, and unveils the source of previous discrepancies. 

2. Entrainment of volume and momentum 
Consider a plane jet issuing from a corner into the plane of symmetry, or an 

axisymmetric jet issuing from the tip of a conical wall into the direction of the axis 
of symmetry. The walls are assumed to  be infinite in extent, the apex angle is 28, 
(figure 1). If  8, = in we have the particular case of a jet emerging from an  infinite 
plane wall perpendicular t o  the jet axis. 

We shall distinguish between flow types with the help of an integer j, where j = 0 
for plane (two-dimensional) flow, a n d j  = 1 for axisymmetric flow. Let (2xy V be the 
volume flux through a cross-section of the jet, and (2nyM the kinematic momentum 
flux, i.e. the momentum flux divided by the constant density of the fluid. Note that 
both V and M are in terms of unit azimuthal angle of axisymmetric flow. A (local) 
jet Reynolds number is defined by Re, = (Mz):  v-l for plane flow, and Re = Mi v-l 
for axisymmetric flow, where z is the axial distance from the jet origin (cf. figure l),  
and v is the (constant) kinematic viscosity of the fluid. 

It is well known that Vincreases with increasingz. Classical similarity considerations 
(with M = const, cf. Schlichting 1979) yield 

k72 = ~ M d - l  

with an  entrainment coefficient E as given in table 1.  Note that E+O as Re,+ co or 
Re + 00 in the laminar cases, while B is a numerically small constant for turbulent 
jets. This justifies the assumption of a slender jet and admits a boundary-layer 
approach. 

Entrainment of volume (or mass) into a jet gives rise to  a flow of the ambient 
fluid (figure 1). To a first approximation, the slender jet acts as a line sink to the 
outer flow. For two-dimensional flow, the outer flow is, again to a first approximation, 
an  inviscid potential flow. Reichardt (1942), Taylor (1958), Wygnanski (1964), Rubin 
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Laminar 

Plane Axisymmetric 

16 
Re2 
- 

Turbulent 0.013$ 

t According to Tollmien (1926); Reichardt (1942). 
$ According to Ricou & Spalding (1961). 

TABLE 1 .  Entrainment coefficient E as defined by (1) 

& Falco (1968) as well as Kraemer (1971) calculated such flows with and without walls. 
For what follows it suffices t o  conclude from the results that  the streamlines of the 
outer flow enter the (very slender) jet at angles is, and to, for laminar and turbulent 
flow, respectively. 

For axisymmetric flow, the problem of predicting the induced outer flow is more 
complex. Neglecting viscosity in the outer flow is incorrect for laminar axisymmetric 
jets (no matter how large the jet Reynolds number Re may be) (Squire 1952; Potsch 
1981 ; Schneider 1981). Thus the full Navier-Stokes equations have to be solved in 
order t o  find the outer flow field. Appropriate boundary conditions are the non-slip 
condition a t  the wall, and a condition which accounts for the line sink of volume at 
the axis. For a conical wall, the variables can be separated in terms of spherical 
coordinates r ,  8 (figure 1 )  by writing Stokes’ stream function @ as 

@ = 4vrf(5), 5 = +(l-cosQ). (2) 

For f(fJ, the following boundary-value problem has been obtained and solved 
numerically (Schneider 198 1 ) 

(3a) 

( 3 b )  

At,) = 0, ( 3 4  

E( 1 - Of’ - (1 - 25)f+f2 = - 2C25( 1 - E/5,) ; 

c2 = - [ l  +f’(O)] > 0; 

where f ,  = f(1-cos8,). 

If the axisymmetric jet flow is turbulent, the induced flow may be approximated 
by an inviscid one if the Reynolds number is sufficiently large, say Re > 5000 
(Schneider 1981). For simplicity, we shall assume the latter condition satisfied in what 
follows. I n  this case, the outer flow field can be found in closed form. In agreement 
with Taylor (1958), the result is 

+ = r ( g )  (1 -$) . 
The entrainment of volume by the jet is associated with an entrainment of 

momentum. This may be seen as follows. Let the jet be surrounded by a control 
surface whose lateral extension a, shrinks to  zero as s+O (figure 2). Convective flux 
of axial momentum through the control surface, as well as pressure and viscous 
stresses a t  the surface, contribute, in general, to the change of kinematic momentum 
flux, dM/dx, in the jet. Using the previous results for the outer flows, the change of 
kinematic momentum flux in the jet can be written as 
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Outer flow 

Wall 
FIGURE 2. Control surface surrounding a slender jet. 
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Convection Viscous stresses 

we Vr VP P gee Tre m (total) 
Pressure 

Plane 
- - - Laminar cot te, - cot ie, 

Turbulent cot 40, - cot te, 

Laminar -f’(O) 

- - - 

Axisymmetric 
-2 + 1  +1  - 1  0 

[cotteWl2 - - Turbulent [~in#3,]-~ -2  + 1 

TABLE 2. Terms contributing to the constant m that characterizes the decay of kinematic 
momentum flux in a slender jet 

8, 60’ 90” 120” 175” 

-6.03 -2.91 -1.83 -1.111 
ca 5.03 1.91 0.83 0.111 
f ‘(0) 

TABLE 3. The constantsf’(0) and 0 for the outer flow induced by axisymmetric laminar jets, 
with various wall semi-apex angles 8, 

where m is a constant which, together with the various contributions to it, is given 
in table 2. The convective momentum flux through the control surface consists of 
contributions from ve  v, and v;, respectively, where v,, v g  are the velocity components 
in (r,O)-directions. As s+O, the contributions due to us as well as the pressure 
contribution are negligibly small in the case of two-dimensional flow. Furthermore, 
viscous normal and shear stresses, gee and 7,e, are to be taken into account only 
if the outer flow is a viscous one, but they cancel out even in this case. The constants 
f’(0) and C2 = - [ l  + f ’ ( O ) ]  are to be obtained from solving the boundary-value 
problem (3a-c). Some numerical results are given in table 3. As @,+R, the constant 
C2 vanishes and, according to table 2 and (4), the momentum flux in the jet becomes 
independent of the distance x .  This is the particular case of a jet flow in the absence 
of any walls, as given by Landau’s exact similarity solution for a point source of 
momentum (Rosenhead 1963). 
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From the point of view of a global momentum balance, the decay of momentum 
flux in the jet has its counterpart in a force due to  pressure and viscous stresses acting 
on thc wall. We shall come back to that point in $6. 

3. Turbulent jets with slowly varying momentum flux 
As mentioned in the introduction, coupling of turbulent jet flow and induced flow 

is necessary in order to avoid a breakdown of the analysis as x+m. With E < 1, 
it follows from (4), together with ( l ) ,  that the momentum flux in the jet changes but 
slowly with the axial co-ordinate. Following the ideas of the method of multiple scales, 
we introduce a ' slow ' variable X = ( X / U , ) ~  in addition to the ordinary ('fast ') variable 
x/a,. Assuming (1) to be locally valid with M = M ( X ) ,  we may use (1) to eliminate 
dV/dx in (4). (A more formal analysis is given in Appendix A by means of an 
asymptotic expansion in terms of E.) This yields a differential equation for M ( X ) ,  
which can easily be integrated. After re-introducing x instead of X, one obtains 

where, according to table 2, m = [cot $3,,,]1+j. M,, is the given value of M a t  the orifice 
of width or diameter 2a,, and x, is a constant of integration (with dimension of length), 
which has been introduced such that M = M ,  at x = 5,. As M changes but slowly 
with x, xo is supposed to be of the order of a,, i.e. x,/a, = const = O(1). The constant 
cannot be determined within the framework of an asymptotic theory for large values 
of z /a ,  (see 5 1 assumption (b)). Note, however, that  the value of the constant x,/a, 
does not matter in the present analysis, since replacing x, by a, in (5) introduces 
only an error that is small of higher order. 

For moderately large distances, which satisfy the relation In (x/x,) < l / m ~ ,  (5) may 
be expanded in terms of the small exponent. The two-term expansion 

-= l--E@ln 
MO 

M 

agrees with an approximate equation given by Kotsovinos (1978) ,  except for the 
constants which have different values. I n  contrast to Kotsovinos' approximation, 
however, the full equation (5) is applicable to arbitrary large distances from the 
orifice, and it properly yields M/M,+O in the limit x/x,+ co. 

With the local momentum flux given by ( 5 ) ,  the local volume flux can be 
determined from (1). Neglecting a term O ( E )  in the coefficient, one obtains 

v = (1 +j) (-EM): xl/(l+j). (7 4 
Since momentum flux and volume flux are proportional to u&a1+5 and umal+j, 
respectively, with jet half-width or radius a, and with velocity urn at the axis, it follows 
from (5) and ( 7 a )  that 

( 7 b )  a = K -El/(l+j)x 

where K ,  and K ,  are constants of order 1. While the classical result of linear growth 
of jet width or jet radius with increasing distance is re-obtained with ( 7 b ) ,  ( 7 c )  differs 
from the classical solution by the term +em in the exponent. 
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Experiments 
(Miller & Comings 1957) 

0 
10 20 50 I 0 0  

X - 
% 

FIQURE 3. Momentum flux in a plane turbulent jet versus distance from the orifice located in 
plane wall perpendicular to the jet axis (a = 2 ~ ~ ) .  

4. Comparison with controversial data 
4.1. Plane turbulent jets 

As mentioned in $1,  there are apparent discrepancies between various experimental 
data on plane turbulent jets. With the help of the previous analysis it seems possible 
to unveil the source of the discrepancies. 

If 8, = x ,  as in Bradbury’s (1965) experiments, m vanishes, and (5) provides 
justification of the classical assumption of constant momentum flux. 

For 8, =in, however, a momentum flux reduction is predicted by (5), which 
amounts to about 20% at a distance of hundred orifice widths (cf. figure 3). 
Comparison can be made with experimental data due to Miller & Comings (1957), 
who defined the jet width such that the data given for jet width and centreplane 
velocity, respectively, can easily be combined to obtain the momentum flux. The 
results are shown in figure 3, indicating reasonable agreement between analysis and 
data. The prediction of the momentum flux reduction is also supported by experimental 
data obtained by Goldschmidt (1964), Heskestad (1965), Goldschmidt & Eskinazi 
(1966), and Kotsovinos (1975), as collected by Kotsovinos (1978). 

With respect to Hussain & Clark’s (1977) investigation of the total momentum flux 
we observe the following. Let Mt be the total kinematic momentum flux including 
the pressure integral, i.e. 

+W 

Mt = I ( iP+P+p/p)dY,  (8) 
-W 

where Y is the lateral boundary-layer co-ordinate (with Y = 0 being the jet 
centreplane). In terms of the small parameter E ,  which characterizes the ‘slenderness ’ 
of the jet (see (7 b ) ) ,  the contributions from velocity fluctuations and mean pressure, 
uf2 and ji, respectively, are of second order as compared with the first-order term 2 
(Townsend 1976). Including the mean square of the velocity fluctuations in the 
momentum balance therefore requires, to be consistent, second-order accuracy in the 
mean velocity U. Owing to matching with the induced outer flow (for details see 

- 
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Appendix A), the second-order mean velocity is negative near the edge of the jet. 
However, this flow reversal was not taken into account in Hussain & Clark’s (1977) 
total momentum balance. This would explain why a too large total momentum flux 
was obtained. Further experiments in this direction are desirable. 

4.2. Axisymmetric turbulent jets 
For axisymmetric turbulent jets no data seem to be available which would be suitable 
for comparisons with the present analysis. Sforza & Mons (1978) found momentum 
flux variations of less than 9 %, but the axial distance was no more than 24 orifice 
diameters, and wall effects, which are now known to be essential, cannot clearly be 
identified. According to  our table 1,  the exponent in (5) is considerably smaller for 
an axisymmetric jet than for a plane one. Hence it may be difficult to observe the 
decay effect in axisymmetric turbulent jets. 

5. Laminar jet with slowly varying momentum flux 
5.1. Plane laminar jet 

Eliminating (dV/dx)2 from ( 1 )  and (4), and integrating the differential equation thus 
obtained, yields 

This shows that the kinematic momentum flux M through any cross-section of the 
plane laminar jet differs but little from its value a t  infinity M,,  the relative difference 
being of the order O(Re;g). Expanding both sides of (9a) for M near M,, one finds 

M 
- = 1 +64m Re;!, + .. ., 
M ,  

where Re,, , = ( M ,  x ) ;  v-l. The same result is obtained from a more formal second- 
order boundary-layer analysis (Mitsotakis et al. 1984). 

Concerning comparison with experiment, a decrease of momentum flux with 
increasing distance has already been observed by Andrade (1939) and, more recently, 
by Sato & Sakao (1964). The latter authors determined M , / M , ,  i.e. the ratio of the 
momentum fluxes a t  the orifice and a t  infinity, respectively, from data due to 
Chanaud & Powell (1962). Since the asymptotic analysis ceases to  be valid near the 
orifice, it is insufficient to predict M J M ,  in the required second-order accuracy. 
Nevertheless, some endorsement can be found (figure 4) by comparing measured 
values of M,/M, with predicted values of M I M ,  a t  positions where the local 
Reynolds number, Re, = (xM):  v-l, is equal to  the orifice Reynolds number, 
Re, = (2a, M,); v-l. 

5.2. Axisymmetric laminar jet 
This case requires a more detailed investigation. I n  order to adapt the boundary-layer 
concept for a slow decay of momentum flux, we first define an inner variable Ci as 
follows : 

fi  = fRe:f;, (10) 

where 6 is defined according to  (2), and Re, is the Reynolds number of the jet a t  the 
orifice, i.e. 

Re: = M,/v2 9 1.  (11) 
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FIGURE 4. Momentum flux versus Reynolds number, for a plane laminar jet emerging from a plane 
wall perpendicular to the jet axis. (Experimental data for ( M , - M , ) / M ,  versus Re, as given by 
Sato & Sakao 1964, with an obvious error in Reynolds number corrected according to Zauner 
1984.) 

Secondly we introduce a ‘ slowly ’ varying variable R ,  

R = ( r /aop ,  ( 1 2 4  

E ,  = 16/Ret Q 1.  (12b) 

The jet flow is now assumed to depend not only on the original (‘fast ’) radial co-ordinate 
r but also on the ‘slow’ variable R (multiple scaling). Separating the variables by 
writing 

for Stokes’ stream function 9, expanding the Naviel-Stokes equations for 9 in terms 
of E ,  with ti fixed, and integrating three times, we obtain 

9 = 4vrfi(ti, R )  (13) 

with functions of integration K J R ) ,  K,(R),  and K,(R).  The boundary condition fi = 0 
at  the axis ti = 0 requires K,(R) = 0. Furthermore, matching with the outer 
expansion, wheref = O( l),  see (2) and (3), is impossible unless K ,  (R) and K,(R) vanish 
too. With these simplifications, (14) can be easily integrated. The result is 

(15) 

where M(R) is introduced as a further function of integration. By determining the 
velocity components from (13) and (15), and integrating with respect to ti, M(R) can 
be identified as the kinematic momentum flux in the jet. Equation (15) resembles the 
classical boundary-layer solution (Schlichting 1933,1979) but with a ‘slowly varying ’ 
momentum flux M(R) rather than a constant momentum flux M = M,. 

The volume flux through a jet cross-section is given by the value of + as ti+ 
and can be found from (13). Withf,(m) = 1, the entrainment rate dV/dr becomes 
independent of the axial coordinate. This is in agreement with what is also obtained 
by simply assuming the relation ( I ) ,  which has been obtained from the classical 
similarity solution, to be locally valid (with z and r being equivalent). For M cancels 
in (1)  when we substitute for e according to table 1. 

fi = M(R) ti/“,+ M(R) ti], 
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FIGURE 5. Momentum flux in an axisymmetric laminar jet versus distance from the orifid located 
in an infinite plane wall perpendicular to the jet axis. r,, constant length of order of orifice radius. 

- 

As the entrainment rate is independent of R ,  the outer solution is the same as i t  
was for constant momentum flux, i.e. i t  is given by (2) together with the boundary- 
value problem (3a-c) forf(6). Furthermore, i t  follows that (4) can be applied locally 
to  determine the as yet unknown momentum flux M ( R ) .  (In a more formal multiple- 
scaling approach the unknown function M ( R )  is determined by inspection of the 
second-order differential equations without recourse to the momentum balance ; 
Appendix B.) Replacing x by r ,  and introducing R according to (12a), one obtains 
dM/dR = -C2M,/2R. Integration yields 

where the constants of integration R, and r,  have been introduced such that M = M, 
at R = R, and r = r,, respectively. Since M, is the momentum flux at the orifice of 
radius a,, and M changes but slowly with r ,  we suppose that ro/ao = 0(1), i.e. is 
independent of Re,. As with the turbulent case ( § 3 ) ,  the value of the constant x,/a, 
cannot be determined, nor does i t  matter within the framework of the present 
asymptotic analysis valid for large distances from the orifice. Simply replacing r, by 
a, in (16) causes an error that  is of the order of Rei2.  

Figure 5 displays some results obtained from (16) for a jet emerging from a plane 
wall perpendicular to the jet axis. Values r/ro < 10 are not shown, as they are 
considered too small for the asymptotic analysis to  be applicable. It can be seen from 
figure 5 that  the momentum flux is considerably below its value a t  the orifice for the 
distances being considered, in particular, if the jet Reynolds number Re, is but 
moderately large. On the other hand, transition to turbulence imposes an upper limit 
on the Reynolds number. Thus there are severe limitations for applying classical 
boundary-layer theory, which is based on constant momentum flux, to laminar 
axisymmetric jets emerging from walls. A critical Reynolds number of about 15 
(according to  the present definition of Re,) is predicted by the fully viscous 
hydrodynamic stability theory (Mollendorf & Gebhart 1973). However, experiments 
(Reynolds 1962; Hanel & Richter 1979) have shown that axisymmetric jets can 
remain laminar for fairly long distances (up to a few thousand orifice diameters) 
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FIQURE 6. Streamlines of an axisymmetric laminar jet flow emerging from an infinite plane wall 
perpendicular to the jet axis. Re, = 10. -, present solution; -----, solution with constant 
momentum flux (Schneider 1981). 

although the Reynolds number is supercritical. This may be explained by the slow 
growth of weak disturbances in slowly diverging jets (Crighton & Gaster 1976; 
Plaschko 1979). 

Further quantities of interest are the radial velocity component in the jet, wy), and 
the jet half-angle 84, i.e. the value of 8 where wit )  has dropped to half its value w, 
at the axis with r fixed. With or = (1/2r2) a*-/aE, one obtains from (13) 

St = 4[2(1/(2)-1)/3];Re-l, (18) 

where M and the ‘local’ jet Reynolds number Re = Mi v-l  vary with r according to 
(16). Hence, in contrast to the classical similarity solution, the velocity at the axis, 
urn, decreases more strongly than r-l, and the jet diameter, 2r84, increases more 
strongly than r .  

Finally, we construct a composite expansion following the multiplicative rule of 
the method of matched asymptotic expansions. (The additive rule provides a similar 
result but with the disadvantage of a small error in the non-slip condition at the wall.) 
Combining f ( f ) ,  which is given by the solution of the boundary-value problem ( ~ u - c ) ,  
and f&), for which (15) has been obtained, the composite solution becomes: 

f x  = f ( f )  [1+fRe;2f-1M,/ik?l-1. (19) 

The r-dependence is contained in M J M  according to (16). 
Streamlines $ = 4vrf = const. are given in figure 6. For the purpose of comparison 

also shown is the composite solution based on classical boundary-layer theory, i.e. 
with constant momentum flux in the jet (Schneider 1981). For moderately large 
distances from the orifice the two solutions differ but little, and in this region the 
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FIGURE 7. Distance of slender-jet termination r* versus jet Reynolds number Re,, 
for an axisymmetric laminar jet (8, = 90"). 

theoretical results have already been confirmed by experiments (Zauner 1984, 1985; 
Schneider 1983). (Note that the streamlines of the outer flow are inclined towards 
the wall. This is a displacement effect due to the non-slip condition at the infinite 
wall.) For very large distances, the decay of momentum flux affects the flow field 
considerably. The distance where the classical solution becomes obsolete depends, of 
course, on the Reynolds number Re,, as is quite obvious from (16). For these and 
other reasons, recent measurements at relatively large Reynolds numbers (Rankin 
et al. 1983) are not conclusive with respect to the present analysis. Experimental 
results for the proper Reynolds number regime are reported in a companion paper 
(Zauner 1985), and also the last paragraph of the next section. 

6. Termination of the slender jet and the formation of a viscous eddy 
While the solution obtained from coupling the jet and the outer flow is well-behaved 

as r + m  if the jet is turbulent, see (5), the corresponding solution for the laminar 
axisymmetric jet is not. Rather, the momentum flux becomes zero at a certain, finite 
(if very large) distance r* from the orifice (figure 5). With M = 0, it follows from (17) 
and (18) that the radial velocity in the jet is zero too, while the lateral extension of 
the jet becomes infinitely large. Thus, due to the entrainment of momentum from 
the outer flow, the jet ceases to be slender. For the critical distance r*, where the 
termination occurs, one obtains from (16) 

r* Re: - exp- 
r0 8c2 
_ -  

The influence of the half-apex angle of the conical wall, 8,, is implicitly contained 
in the constant c2, which follows from (3 b) or table 3. In the limit 8, + X  (' vanishing ' 
wall), one obtains C2+0 (Schneider 1981, see also table 3), and r*/r,+ CO. If 8, < X ,  

however, r*/ro has a finite value that depends enormously on the Reynolds number 
Re, (figure 7 ) .  

The vanishing momentum flux in the jet is, of course, also in accordance with a 
global momentum balance for the whole flow field. Since the characteristic length in 
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FIQURE 8. Region of closed streamlines of an axisymmetric laminar jet flow emerging from an 
infinite plane wall perpendicular to the jet axis. (Analysis not strictly valid.) 

X b O  

the outer flow field is of order r and the velocity is of order v/r, the order of magnitude 
of both the viscous stresses and the pressure, referred to unit density, is given by ( v / ~ ) ~  
(Schneider 1981). Integrating over the wall surface from r = r, to r = r* shows that 
the force exerted on the wall completely balances the momentum source of strength 
M,, while the momentum flux through the spherical control surface r = r* is 
negligibly small. 

Applying the analysis up to the region r / r*  = O(l) ,  where, strictly speaking, it is 
not valid any more since the slender-jet assumption is violated, we obtain rather 
peculiar results (figure 8). The composite solution (19) predicts closed streamlines. 
This recirculatory flow region is completely enclosed by the streamline @ = 0, which 
is circular in shape and extends from a free stagnation point at the axis (5 = 0, r = r * )  
up to the wall. The centre of the toroidal eddy is found by seeking the maximum 
value of the stream function. With @ = 4vrfx and (19) one finds the following 
equations for the co-ordinates t,, rc of the centre: 

(214  

W b )  

P -t F-33C5, = 0, 

r, = r* exp [(F+ 1)/3@5,], 

where F = f(&)/[,f’(&.) is given by the outer-flow solution (Schneider 1981). Note 
that the angular co-ordinate, E,, as well as the ratio r c / r * ,  are independent of the 
Reynolds number. For 8, = 90’ (plane wall), (21a, b )  yield 5, = 0.146 (8, = 45.0°) 
and r, /r*  = 0.523. 

Viscous toroidal eddies due to a point source of momentum have already been found 
by investigating exact solutions of the biharmonic equation (Blake 1971,1979; Liron 
& Blake 1981). However, the assumption of creeping flow does not apply to the 
present problem. Merely for the decay of the viscous eddy at  distances much larger 
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than r* could the biharmonic equation be a valid approximation. This would suggest 
that the viscous eddy is of infinite extent rather than bounded by a limiting stream 
surface $ = 0. Details of the decay remain to be studied. 

Regarding experiments, i t  can be seen from (20) and figure 7 that, in a laboratory 
apparatus of reasonable size, there is only a very limited range of Reynolds numbers 
which are suitable for observing the termination of the slender jet and the formation 
of the viscous eddy. This may be the reason why the phenomenon has escaped 
observation previously. Guided by the present results, however, i t  is indeed possible 
to observe the toroidal eddy (Zauner 1985). With respect to  the location of the eddy 
centre, the experiments (Zauner 1985) also confirm the predicted value of 0, as well 
as the variation of r, according to  an exponential function of Re:, yet with a somewhat 
different value of the constant C2 in the exponent in (20). 

7. Conclusions 
Slender jets emerging from orifices in large walls arc influenced by entrainment of 

momentum as follows. 
(a )  Laminar plane jet. As the distance from the orifice tends to  infinity, the 

momentum flux approaches a constant, non-zero value that is slightly smaller than 
the momentum flux a t  the orifice. The effect on the flow field can be described by 
second-order boundary-layer theory. 

( b )  Laminar axisymmetric jet. The momentum flux changes slowly, yet consider- 
ably, when the distance from the orifice increases. There is a strong effect on the flow 
field, which can be analysed by combining the method of matched asymptotic 
expansions and the method of multiple scales. When a critical distance is approached, 
which depends exponentially on the square of the jet Reynolds number, the 
momentum flux becomes very small, the jet diameter very large, and the analysis 
breaks down. Together with the termination of the slender jet, the formation of a 
toriodal viscous eddy is predicted. Experimental confirmation is available (cf. the 
companion paper by Zauncr 1985). 

(c) Tw,rbulent (plane or axisymmetric) jets. The momentum flux vanishes as the 
distance from the orifice tends to infinity. This is the result of simply coupling jet 
and induced outer flow via momentum and volume balances, or, more formally, by 
applying a multiple scaling approach. While jet width or jet diameter are found to 
grow linearly with axial distance, the axial velocity decreases more rapidly than 
predicted by classical boundary-layer solutions. This is in agreement with some 
experimental data, whereas disagreement with other data is believed to be due to 
the absence of a wall or the failure to take flow reversal into account. 

The author is grateful to Mr K. Mitsotakis and Mr E. Zauner for their help in 
preparing this paper. Mr Mitsotakis also provided some of the numerical values given 
in tables 2 and 3. The analysis presented in Appendix B was performed by Mr Morwald 
as part of his master’s thesis. 

Appendix A: Asymptotic expansions for plane turbulent jets 
Equation ( I )  defines an entrainment coefficient E .  For a self-preserving turbulent 

jet a t  large distances from the orifice (x /a ,  % l ) ,  E is a numerically small constant, 
(table 1) .  Thus E may be used as a perturbation parameter, which is equivalent to 
considering very slender jets, cf. (7b) .  
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Dimensionless variables are introduced by referring all lengths (including the 
Cartesian co-ordinates x, y, figure 1) to the orifice (slit) half-width a,, the kinematic 
momentum flux M to its value at  the orifice, M,, the velocity components u and w 
to (M,/a,)i, and the pressure to pM,/a,, where p is the density which is assumed 
constant. The (dimensionless) pressure difference with respect to the undisturbed 
pressure at infinity is denoted by p. 

It is our aim to find an approximation that is uniformly valid as x + 00. Classical 
boundary-layer analysis is unsuitable since it cannot properly take into account the 
variation of momentum flux (Kraemer 1971 ; Kotsovinos 1978). A suitable approach 
is to combine the boundary-layer concept (i.e. co-ordinate stretching with respect 
to y )  and the multiple scaling procedure (with respect to 2). Hence we define 

Y = Y/E, X = Y ,  (A 1 )  

and expand the mean variables (denoted by overbar) and the Reynolds stresses (m, 
for example) as follows. 

Inner expansion: 
u =  [M(X)/E]t[D1(X, Y)+€U&,X,  Y ) +  ...I; 
c =  [EM(X)]f[&, Y ) + a E ( x , X ,  Y ) +  . . . I ;  
p = M(X)[<(x, Y)+€&(Z ,X ,  Y ) +  ...I; 

rn = M ( X )  [WV""(x, Y ) + E U I ( * ) ( Z , X ,  Y ) +  ...I. 
Outer expansion : 

- 1 u = [€M(X)] i  [ul(x, y) + ... 1; 
@ = [€M(X) ] i  [wl(x, y) + ...I; 
P = ~M(X)bl(Gy)+. . . l ;  

u'w' = O ( 8 ) .  

The basic equations are the equation of continuity and the momentum equation, 
which contains the Reynolds stresses but no molecular stress terms. 

Expanding according to (A 3) yields the Euler equations for ul, w1 and p,. This 
indicates that the outer flow is an inviscid potential flow. 

Expanding according to (A 2) yields, in first order, 

i.e. formally the classical boundary-layer equations for free turbulent shear layers 
(Townsend 1976). For the momentum balance to be considered below, it is important 
to note that the term a Q/a Y does not appear in the boundary-layer equations as 
it is small of higher order. This has already been observed by Townsend (1956), but 
Hussain & Clark (1977) did include the term in their analysis of the total momentum 
flux. 
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Boundary conditions are the usual symmetry relations a t  the centreplane Y = 0, 
and the matching conditions as Y- t  co and y+O: 

Q ( X ,  co) =o, Tgx, co) = v1(x,0); (A 5a)  

p,(x, co) =o; (A 5 b )  

u'(1) = o( Y-l) as Y- t  00. (A 6) 

(A 6) requires that the velocity fluctuations decay sufficiently fast. This is in 
agreement with Stewart's (1956) analysis, and is confirmed by measurements (Miller 
& Comings 1957). (A 5 b )  may be used to  eliminate an unknown function of integration 

- from (A 4c), which yields 
p = - V ( l ) .  

1 

To determine the 'slowly' varying function M ( X ) ,  the procedure usually applied in 
a multiple-scaling analysis would be an inspection of the second-order equations to 
avoid secular terms. This can be done nicely in the laminar flow case, see Appendix B. 
For the turbulent jet, however, an approach involving the first-order momentum 
balance seems to  be preferable as uncertainties associated with second-order Reynolds 
stresses are avoided. 

Defining the total momentum flux according to (8), introducing dimensionless 
variables, and expanding according to  (A 2) yields 

For some applications it could be useful to  eliminate the pressure term in (A 8) by 
means of (A 7), but this is not of interest in the present context. 

As the momentum flux changes but slowly with increasing distance from the wall, 
the first integral on the right-hand side of (A 8) is independent of the 'fast ' variable 
x, i.e. is a constant. Since M ( X )  is a yet undetermined function, the constant can be 
given the value 1 without loss of generality, i.e. 

VdY = 1.  s1: - 

(A 8) then shows that M ( X )  is a first approximation of the total kinematic momentum 
flux. Therefore the momentum balance as outlined in $82 and 3 can be applied with 
the following result, which is equivalent to  ( 5 )  : 

M ( X )  = (X,/X):" (X, = const). (A 10) 

The first-order inner problem as well as the first-order outer problem now resemble 
their classical counterparts (Tollmien 1926; Taylor 1958) apart from the slowly 
varying coefficient M ( X )  in the expansions (A 2) and (A 3). Thus the well-known 
similarity transformations may be applied, e.g. 

where y = Y/x, and G(y) is a reduced stream function which, of course, cannot be 
determined without modelling - or measuring - the turbulent momentum exchange. 

With respect to previous controversies i t  is important to note that, according to 
(A 8), both the velocity fluctuation and the mean pressure terms are of second order 
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in the total momentum flux. Matching of the second-order inner expansion and the 
first-order outer expansion requires 

lim U2 = limu, < 0, 
Y+oO !f+O 

where the inequality follows from the well-known outer-flow solutions (Taylor 1958). 
Thus, as already suggested by Kotsovinos (1978), there is a mean flow reversal near 
the edge of the jet. Recent observations (Goldschmidt, Moallemi t Oler 1983) confirm 
this prediction. The conclusions regarding momentum flux measurements are given 
in the main paper ($54 and 7). 

Appendix B : Asymptotic expansions for axisymmetric laminar jets 
(a) Dimensionless parameters and variables : 

(b) Basic equation : vorticity transport equation : 

(Milne-Thomson 1968). 
( c )  Boundary conditions : 

afir;/af bounded, f i e  = 0 on f = 0 ; 

fir =0 ,  f i e = O  o n f = f w ;  

f i r = = ,  f i e  = O  asr"+m. 

( d )  Given momentum flux at r = ro = O( 1 )  : 

2 5  {fir[( 1 -2EJ Cr - 2fi (1 - f ) i  f i e ] ) + - + o  df[ = Re:. 
0 

( e )  Multiple scaling: 

J = 47F(f, R )  
with R = 7%. 
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Note that (B 5) assures that there are no secular terms in the velocity components 
asr"+cO. 

(f) First-order inner expansion : 

F ( t ,  R )  = 4 o ( E i j  R ) + o ( ~ o )  (B 7)  

with ti = 6 t / ~ o  (B 8) 

40 = -@(R) Ei/[l+ -@(R) ti1 (B 9) 
yields (cf. $5)  

with B ( R )  to  be determined from inspection of the second-order equations (see below). 
With Fi0 =fi, and -@(R) = M ( R ) / M , ,  (B 9) is equivalent to (15). 

(9 )  First-order outer expansion : 

F ( t ,  R )  = F O O ( 5 ,  R )  + O(E,). (B 10) 

Matching with first-order inner solutions shows that Po,([, R )  = f(6) where f(t) is to 
be determined from the boundary-value problem (3u-c). 

(h)  Second-order inner expansion (Morwald 1984) : 

' (5 ,R)  = ~ o ( E i , R ) + E o F , l ( t i i , R ) + O ( E ~ )  (B 11) 

yields a linear, inhomogeneous differential equation for E1,, with general solution 

+ CJR)  + C,(R) (1  + B&)3 B-l 

+ C,(R) ( - &- 1 + ZB In ti + &ti) . 
+C2(R) (2 1nf;i+4-@ti+fi2tf) 

(B 12) 1 
With A@ (from the first order) and C,, ... C,  (from the second order), five functions 
of the 'slow' variable R are available to satisfy the boundary conditions on the axis 
and the conditions for matching the second-order inner expansion with the first-order 
outer expansion. The result is 

C,(R) = 0, (B 13a) 

C,(R) = - [ l  +f'(O)] = C2 = const, (B 13b) 

and 

C,(R) = -CZ/B(R), 

RAT(R) = -g2. 
(B 13c) 

(B 13d) 

Co(R)  would have to  be determined by an inspection of the third-order equations. 
Integration of (B 13d) with B = 1 a t  R = R, = const = 0 ( 1 )  yields: 

-@(R) = 1 -tC2 In (RIR,). (B 14) 

(B 14)is equivalent to (16) which has been obtained in $5 by a different method. Note 
that M ( R ) ,  i.e. a slow variation of the momentum flux with r", is necessary to  eliminate 
the terms 6;' and Inti,  which produce singularities a t  the axis ci = 0, in the 
second-order solution (B 12). This justifies the multiple scaling approach. 
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